PRATT SCHOOL of

Duke ‘ ENGINEERING

Developing an Automated Trading API

Madeline F. Briere & John Board, Ph.D.

Fitch & Co.

Final Product

Abstract Discussion

This project centers on the
development of an Application

Background

* Algorithmic Trading is a method of executing large The final product is capable of

TwsApilmp!
<cinterface>>

batches of automated and pre-programmed trading Portole |+ e+ s amporae -Pesposaarder EWrapperto consistent order placement and
' ') +jobs : JobHandler - 1 isfi
Programming Interface!"! for the instructions!?! e Ao lont: ECtent market data retrieval. It satisfies

+tekPrice{ ¢ Tickrd,

ek TIRTYDS, it the majority of the initial
requirements, leaving only

. A)) Stock unordered_map <string, boo> + connectionOpened() : voic
market variables, one can algorithmically predict the pp——— + hesPrcs (ymbol s cle pesiteciubbey S
parallelization left to complete.
This will be more relevant when

instructions that will yield the highest financial returns oo o M;os“‘lﬁ‘g:gﬂ Tg'xd‘\a
* An Application Programming Interface (API) is used for O e s) o

P e onva we consider efficiency, rather than
functionality. In the upcoming

+TwsApilmpl() : TwsApilmpl *
+ bulkinvest(selected : portiolio)

automated trading of positions in
the stock market. An external
strategy component (not discussed
here) is used to generate a map of
trading instructions, which serves
as input for the API. The Interactive

* Using intelligent strategies and drawing on existing

communication between various software components!!! JobHandlor ot Corirac,
) 3 . +jobs: JobQueue* Queue
« In this project, these components are the Interactive =

avgCost : double) : void
+ client: EClientL 0"

+jobs: listeJob*>"

Brokers Trader Workstation!?! is
then used to submit the

Brokers Trader Workstation (TWS) and a strategy

+JobHandler(; : JobQueue*,
EC: ECllentL0"): JobHandler' [+ JobQueue) : JobQueue®

months, the functionality of the

. + adddob(ob: Job'): void + packNext(): ResponseHandler .
. . component (not described here +chockdobi(ob: Job):Status +poskLasi(: o a API will be expanded to
corresponding requests. The final g b () 1d tradi) . . + submitlobs(): void + puhi o) void < tiobs dobueuer d p o f b
. . . . I V\/ - + getMatches JobType): ls >
product is capable of queuing jobs, N submits ree;) world trading mSthtl?in; dleth el oo e accommodate quefrlis rorg the
. . . TW. + Responsetfander (obs: JobCueue,
placing orders, and requesting The API must submit requests to TWS and handle the s 7 e ezt strategy portion of the product.
market data. It utilizes extensive responses of these requests Lo s oo fﬁ Further error-catching will be
i ino i * The API must also handle erroneous requests and the Samoun g #sats: Stas Account added to protect against the
error handling, resulting in a robust i
and effective application. resulting application errors e ”‘L:)“’"”"e L poalione lacpasions placement of erroneous
Lo g o transactions. The end goal is to
switch from paper trading to live

trading and see actual returns.

Position Job.
Position
+position :int

Goals API Requirements . ‘ o ‘ — ‘ ol
Project Goals: _ High-Level

To develop an API that will:

. Submit TWS (1) Place orders to BUY/SELL/SHORT
* Interface between a trading

Acknowledgements

Figure 2: UML Diagram of the final API product, excluding externallimported resources such as the IB API1*!

¢ requests positions, Intellectual property of Fitch & Co.
strategy and a trading (2) Request current market data (prices, daily » The final API layout can be seen in Figure 2 Completed as Independent Study for Duke
application returns) « JobHandler: Sends Jobs to TWS via JobQueue University
* Complete requests and return Receive TWS (1) Record the completion of jobs, * ResponseHandler: Handles responses from TWS
current market data responses (2) Receive and store responses to requests * Account: Stores account data (positions, available funds, etc.) References

* Be robust and capable of
handling failures (i.e., failure
to complete orders, invalidated
data, application failure)

Interface with Translate mapping of portions/positions to TwsApilmpl: Accepts a strategy-based Portfolio and updates
Strategy orders through the TWS application the connected account to reflect the desired portfolio

_ Low-Level * The final project sa.msf.les all objectives shown in Figure 1 www elsevier.com/connect/whats-an-api-

. (except for parallelization) 5-things-you-need-to-know-to-stay-
Hz.mdle (1) Consistently: catching identical failures in « Final distributed work flow shown in Figure 3 current.
failures same way,

. . . 2. “Integrated Investment
(2) Robustly: catching all potential failures, Managgement.” Low-Cost Online Trading |
(3) Verbosely: returning information regarding

Interactive Brokers,
the failure to the user www.interactivebrokers.com/en/home.php.

1. Elsevier. “What's an API? 5 Things You
Need to Know to Stay Current.” Elsevier
Connect,

Team Goals:
To produce a flexible platform:
*» For automated trading of stock

ma.rket p9s1t10n; . Maintain job Submit requests in the order they are placed to) 5 RO 3. “Definition of “Algo or Algorithmic
. i ’ - i i
Using an interchangeable order maintain sequential logic &l TS [5 API I grladmg I;Iviigﬁg Financial
. . > 0SS A com,
strategy . Parallelize Complete independent tasks in parallel for = www.z;},sdaq.com/investing/glossary/a/alg
* Able to run using both paper tasks** efficiency o-trading.

trading (for testing) and live
trading (for actual trials)

4. “IB APL.” IB API | Interactive Brokers,
www.interactivebrokers.com/en/index.php
€=5041.

Figure I: Requirements for the desired API, which communicates between TWS and a
flexible strategy component
**Parallelization is more relevant to efficiency than functionality (the focus of this stage)

Figure 3: Distributed work flow: (1) Stock markets, (2) TWS, (3) (Mulnple instances of) our trading
application (where JH is the dler and RH is the)

