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Project Goals: _ High-Level

To develop an API that will:

. Submit TWS (1) Place orders to BUY/SELL/SHORT
* Interface between a trading
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Figure 2: UML Diagram of the final API product, excluding externallimported resources such as the IB API1*!

¢ requests positions, Intellectual property of Fitch & Co.
strategy and a trading (2) Request current market data (prices, daily » The final API layout can be seen in Figure 2 Completed as Independent Study for Duke
application returns) « JobHandler: Sends Jobs to TWS via JobQueue University
* Complete requests and return Receive TWS (1) Record the completion of jobs, * ResponseHandler: Handles responses from TWS
current market data responses (2) Receive and store responses to requests * Account: Stores account data (positions, available funds, etc.) References

* Be robust and capable of
handling failures (i.e., failure
to complete orders, invalidated
data, application failure)

Interface with Translate mapping of portions/positions to TwsApilmpl: Accepts a strategy-based Portfolio and updates
Strategy orders through the TWS application the connected account to reflect the desired portfolio
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Team Goals:
To produce a flexible platform:
*» For automated trading of stock
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trading (for actual trials)
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Figure I: Requirements for the desired API, which communicates between TWS and a
flexible strategy component
**Parallelization is more relevant to efficiency than functionality (the focus of this stage)

Figure 3: Distributed work flow: (1) Stock markets, (2) TWS, (3) (Mulnple instances of) our trading
application (where JH is the dler and RH is the )




